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ABSTRACT
One of the many goals of a digital twin is to be able to use the “as 
manufactured” information to determine the aircraft structural life more 
accurately. Many aircraft make use of cold expanded (Cx) holes to increase 
the life of select fastener holes.  Currently there is not an accepted method to 
predict the life at Cx holes accounting for the physics of the process.  The 
Working Group on Engineered Residual Stress Implementation (ERSI) has 
been actively pursuing methods to accurately predict the fatigue life of Cx 
holes. Recently the ERSI working group put out a round robin exercise 
focusing on how uncertainty in fatigue response due to the random variability 
in residual stresses at Cx fastener holes can be captured in damage tolerance 
analysis (DTA).
The round robin was conducted in a single blind fashion. While most of the 
respondents to the round robin provided deterministic analysis, Southwest 
Research Institute (SwRI) performed a probabilistic analysis to better account 
for random variables. By performing this probabilistic analysis, SwRI is able to 
identify the sensitivities in the DTA to the input parameters. Once the 
sensitivities are known they can be used to determine the parameters that 
need to be tracked for use in a digital twin. This paper will demonstrate how 
progressively addressing various parameter uncertainties can reduce the 
overall uncertainties in the crack growth prediction of a digital twin.
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Overview of Linear Elastic Fracture 
Mechanics (LEFM)
 Fracture mechanics is used to predict how a 

crack will grow in a structure from an initial 
state to failure.

 LEFM assumes there is a crack like defect 
present at a structural critical location or detail

 Cracks cause a stress intensity factor
– Function of geometry, crack length, loading 

residual stresses
 Cyclic loading causes a change in the stress 

intensity factor (∆K)
 Crack growth rates are determined from 

material testing
 ∆K is used to determine how much a crack 

grows for each cyclic load applied to the 
structure

 Parts fails at a critical stress intensity
 Spectrum loading can cause crack growth 

retardation 
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Cold Expansion (Cx)

 Cold expansion can increase crack 
growth life at fastener holes by 
imparting the compressive residual 
stress field around the hole.
 The effectiveness of the process is a 

complex interaction between 
geometry, amount of applied 
expansion, material and applied 
loading
When applied properly it can 

increase crack growth life by orders 
of magnitude
 Often used in commercial and 

military aerospace applications.
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Cx Process

 Drill starting hole
 Ream to starting diameter
 Verify starting diameter
 Check mandrel
 Slide sleeve onto mandrel
 Insert mandrel into hole
 Perform Cx
 Remove sleeve
 Verify expansion after Cx
 Ream to final diameter if necessary
 Variability in residual stress from Cx process
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ERSI Round Robin

 Engineered Residual Stress Implementation group held a round 
robin analysis challenge. 

– Predicting life of cold expanded holes with variability

 Provide some test data on material and cold expanded hole 
residual stress field variability
 Blind predictions submitted before coupon testing for variable 

amplitude spectrum loading was performed
 Used as a demonstration case for this presentation
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ERSI Material Data

 Two lots of 7050-T7451 Plate
 Poisson Ratio = 0.33
 Ultimate Strength (Ksi; L; two replicates) 

– Lot A: 79.8 & 80.2
– Lot B: 75.8 & 76.3

 Yield Strength (Ksi; L; two replicates) 
– Lot A: 71.4 & 72.2
– Lot B: 66.6 & 67.2

 KQ (Ksi-√in; L-T) Lot A: 34.1
 KIC (Ksi-√in; L-T) Lot B: 40.4
 Recommended KC (Ksi-√in) 80
 Recommended KIC (Ksi-√in) 40
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ERSI Crack Grow Rate Data & Fit
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ERSI Test Coupon Geometry
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ERSI Residual Stress Field

 Provided full 2D residual 
stress field for 17 Cx holes

– From 2 materials
– 3 levels of Cx, “nominal” Cx, 

low Cx and 3 high cx 
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ERSI Variable amplitude (VA) Spectrum

 119400 Cycles
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Damage Tolerance Analysis (DTA) of 
cold expanded hole

 DTA performed with AFGROW
 Advanced corner crack at a hole 

model used
 Geometry

– Width =  0.75, thickness = 0.25, 
diameter = 0.1875, c crack length 
= 0.034, a crack length = 0.050

 Material
– 7050-T7451

 Spectrum scale factor = 50.3
 Spectrum Loading Retardation, 

SOLR = 2.75 
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DTA Results for nominal Cx condition

 Analyzed nominal geometry with AFGROWs two-point residual stress field capability 
 Used lower bound of nominal measured residual stresses
 Predicted 126434 cycles to failure
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NESSUS® Probabilistic Analysis Software 
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NESSUS® is a general purpose 
software tool for probabilistic analysis

Problem Statement and Model Interfaces
• Problem statement allows mixture of analytical 

equations and external models
• Flexible definitions of input random variables and 

uncertainties
• Powerful capabilities for mapping variables into input 

files
• Custom interfaces for most popular FEA packages
Analysis Algorithms
• 16 probabilistic analysis and 

reliability methods
• Separation of natural variability and 

uncertainty as needed
• Advanced response surface models
• Design of computer experiments

2. Random Variable Definitions

1. Problem Statement

3. FEA Mapping

4. Probabilistic Analysis & Results



Probabilistic Analysis

 Linked AFGROW to Nessus with a Python script
 Random variables

 Solved with Advanced Mean Value Plus (AMV+)
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Description Variable Distrib
ution

Mean Standard
Deviation

C crack tip initial length CTIP Normal 0.034 0.002
A crack tip initial length ATIP Normal 0.05 0.002
Spectrum Scale Factor STRSCL Normal 50.3 2.5

Crack Growth Rate (da/dN)
scale factor

DADN Normal Table 0.2

Residual stress field scale
factor due to Cx

CX Normal Table 0.2

Crack growth retardation SOLR Normal 2.75 0.5



Initial Probabilistic Analysis Results

 Large Variability in Life Results
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Reduce variability in results

 Ideally tracking more information with a digital twin will reduce 
the variability and give a more individual aircraft result
 Importance factors and sensitivities can help determine what 

the digital twin should track
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Effects of updating SOLR

 Blind prediction had a large variation in SOLR based on history 
with aluminum for a wide variety of spectrums
 Determining SOLR for actual spectrum can reduce variability 

in the results.
 SOLR determined by correlating to nominal test results
 SOLR of 2.6 results in the deterministic analysis matching the 

test life of a Cx hole with average amount of cold working
 Determining retardation effects is typical done during 

development and sustainment.
 Could easily be added to digital twin
 Probabilistic Analysis updated with SOLR = 2.6 and standard 

deviation of 0.05
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Effects of SOLR

 Tracking SOLR with the digital twin decreases the 
distribution for cycles to failure slightly
 But it is still not accounting for individual aircraft affects
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Adding individual aircraft tracking (IAT) to 
digital twin
 Adding IAT to digital twin substantially reduces uncertainty in 

the load sequence.
 There is still some uncertainty in loads due to measurement 

error and missing flight data.
 Assumed standard deviation reduce to 0.1 
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Tracking crack growth rate for material 
batch in digital twin
 By also tracking crack growth rate in the digital twin analytical 

life variation is reduced further.
 Assume standard deviation reduced to 0.05
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Tracking Cx Residual Stress Field

 Adding the tracking of the Cx residual stress field can 
greatly reduce the variability in the crack growth life
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What if studies

 Can use probabilistic to perform what if evaluations
 For example, if it was decided it is not possible or it is too 

expensive to track da/dN.  What would happen?
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Summary

 Performing a crack growth analysis requires lots of inputs.  
 The inputs can have a lot of variability.
 If inputs not tracked in a digital twin, there can be a large 

variation in crack growth life.
 Demonstrated how using probability analysis the variability in 

crack growth life can be analyzed.
 Demonstrated how tracking additional variables in a digital 

twin can reduce the variability in crack growth life.
 Probabilistic importance factors and sensitivities can be used to 

decide what should be tracked in a digital twin.
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